翻訳と辞書 |
Electron beam freeform fabrication : ウィキペディア英語版 | Electron beam freeform fabrication
Electron Beam Freeform Fabrication (EBF3) is an additive manufacturing process that builds near-net-shape parts requiring less raw material and finish machining than traditional manufacturing methods. It uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. ==History== NASA Langley Research Center (LaRC) originated (EBF3) technology development. The Additive Manufacturing Process was primarily developed and engineered by Karen Taminger, material research engineer for NASA LaRC. EBF3 is a NASA-patented additive manufacturing process designed to build near-net-shape parts requiring less raw material and finish machining than traditional manufacturing methods. EBF3 is a process by which NASA plans to build metal parts in zero gravity environments; this layer-additive process uses an electron beam, and a solid wire feedstock to fabricate metallic structures. The process efficiencies of the electron beam and the feedstock make the EBF3 process appropriate for in-space use. Since 2000, a Team of Researchers at the NASA LaRC have led the fundamental research and development of this technique for additive manufacturing; which is for metallic aerospace structures. Additive manufacturing encompasses processes in which parts are built by successively adding material rather than by cutting or grinding it away as in conventional machining. Additive manufacturing is an outgrowth of rapid prototyping techniques such as stereolithography, first developed for non-structural plastic parts over thirty years ago.〔http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080013538_2008013396.pdf Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Electron beam freeform fabrication」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|